
Taking SQL to the PromQL

Kevin Howell

Principal Software

Engineer

Lindsey Burnett

Senior Software Engineer

1

Agenda

2

What we’ll
discuss today

▸ Why time
series?

▸ Strings and
Numbers

▸ Metrics

▸ Labels

▸ Instant Vectors

▸ Range Vectors

▸ Aggregations

▸ Grouping

▸ Recording Rules

▸ Analyzing
PromQL

3

Taking SQ
L to the P

rom
Q

L Why store data
in time series?

Use the right tool for the job

Monitoring Use Cases
Prometheus was built for monitoring

Governance
Cloud Native Computing Foundation project

Industry Standard
"Prometheus has become the industry standard for
monitoring applications and services" - Grafana

4
Source:
https://grafana.com/oss/prometheus/

5

▸ SQL: Structured query language

▸ PromQL: Prometheus query language

▸ Instance Vector: data points from one or more time series at a single

instant in time

▸ Range Vector: data points from one or more time series across a

range of time.

Important Definitions

http_requests_total{method="GET", path="/hello/world/1", code=”200”} => 100

http_requests_total{method="GET", path="/hello/world/2, code=”200”} => 150

http_requests_total{method="GET", path="/hello/world/3", code=”200”} => 250

http_requests_total{method="POST", path="/hello/world", code=”400”} => 75

6

id method path code timestamp

1 GET /hello/world/1 200 2023-05-01 10:15:00

2 GET /hello/world/2 200 2023-05-01 10:18:30

3 GET /hello/world/1 200 2023-05-01 10:21:15

4 POST /hello/world 400 2023-05-01 10:24:45

5 GET /hello/world/3 200 2023-05-01 10:28:10

Basic query

8

SQL
▸ SELECT "timestamp", *

FROM http_requests

▸ http_requests_total

PromQL

Result
▸ Retrieves data from the table/set of time

series

http_requests_total{method="GET", path="/hello/world/1", code=”200”} => 100

http_requests_total{method="GET", path="/hello/world/2, code=”200”} => 150

http_requests_total{method="GET", path="/hello/world/3", code=”200”} => 250

http_requests_total{method="POST", path="/hello/world", code=”400”} => 75

9

Filtering

10

SQL
▸ SELECT "timestamp"

FROM http_requests

WHERE code='200'

▸ http_requests_total{code="200"}

Result
▸ Filters data based on conditions

PromQL

Example time series data

11

http_requests_total{method="GET", path="/hello/world/1", code=”200”} => 100

http_requests_total{method="GET", path="/hello/world/2", code=”200”} => 150

http_requests_total{method="GET", path="/hello/world/3", code=”200”} => 250

http_requests_total{method="POST", path="/hello/world", code=”400”} => 75

Aggregation

12

SQL
▸ SELECT count(*)

FROM http_requests

WHERE code='200'

▸ sum(http_requests_total{code="200"})

PromQL

Result
▸ Aggregates matching rows or time series

Example time series data

13

http_requests_total{method="GET", path="/hello/world/1", code=”200”} => 100

http_requests_total{method="GET", path="/hello/world/2", code=”200”} => 150

http_requests_total{method="GET", path="/hello/world/3", code=”200”} => 250

http_requests_total{method="POST", path="/hello/world", code=”400”} => 75

PromQL

Aggregation with grouping

14

SQL
▸ SELECT count(*),code

FROM http_requests

GROUP BY code

▸ sum(http_requests_total)

by (code)

Result
▸ Groups data by an attribute's value

Range queries

15

SQL
▸ SELECT "timestamp",code

FROM http_requests

WHERE "timestamp" >

NOW() - INTERVAL '5

minutes'

▸ http_requests_total[5m]

PromQL

Result
▸ Time-based range selection

Rate calculation

16
Source:
https://www.postgresqltutorial.com/postgresql-window-function/postgresql-lag-function/
https://mode.com/sql-tutorial/sql-window-functions/

SQL
▸ Use complicated window

functions (e.g., LAG) to

calculate the difference

between consecutive rows

over a specific time

interval.

▸ rate(http_requests_total[5m])

PromQL

Result
▸ Computes the rate of change of a metric over

time

https://www.postgresqltutorial.com/postgresql-window-function/postgresql-lag-function/
https://mode.com/sql-tutorial/sql-window-functions/

Combining data from related data sets (on)

17

SQL
▸ SELECT *

FROM http_requests

INNER JOIN http_errors

 ON http_requests.id =

http_errors.id

▸ rate(http_errors_total[5m]) /

on(request_id)

rate(http_requests_total[5m])

PromQL

Result
▸ Combines data from two related data sets

Combining data from related data sets (ignoring)

18

SQL
▸ SELECT *

FROM http_requests

INNER JOIN http_errors

 ON http_requests.id =

http_errors.id

▸ rate(http_errors_total[5m]) /

ignoring(code, path)

rate(http_requests_total[5m])

PromQL

Result
▸ Combines data from two related data sets

One-to-many and many-to-many matches

19

SQL
▸ SELECT *

FROM http_requests

INNER JOIN http_errors

 ON http_requests.id =

http_errors.id

▸ rate(http_errors_total[5m]) /

ignoring(code)

group_left

rate(http_requests_total[5m])

PromQL

Result
▸ Combines data from two related data sets,

group_left/group_right necessary when the data
sets have different cardinality

20

▸ GET /api/v1/query

･ timestamp: find data close to this time (within 5 minutes prior to

this timestamp)

▸ Depending on the query, can return:

･ Data points and labels for a single timestamp for one or more

time series (Instance Vector)

･ Data points and labels for multiple timestamps for one or more

time series (Range Vector)

･ A single data point (Scalar or String)

HTTP Query Endpoint

curl -XGET 'http://prometheus-server:9090/api/v1/query' \

 -d 'query=http_requests_total{path="/hello/world"}'

21

{

 "status": "success",

 "data": {

 "resultType": "vector",

 "result": [

 {

 "metric": {

 "__name__": "http_requests_total",

 "method": "GET",

 "path": "/hello/world",

 "instance": "example.com:9090",

 "code": 200

 },

 "value": [1623456000, "100"]

 },

 {

 "metric": {

 "__name__": "http_requests_total",

 "method": "POST",

 "path": "/hello/world",

 "instance": "example.com:9090",

 "code": 400

 },

 "value": [1623456100, "150"]

 }

] } }

Note

resultType: “vector” in the

HTTP response indicates an

Instance Vector

22

▸ GET /api/v1/query_range

･ start: Start timestamp, inclusive.

･ end: End timestamp, inclusive.

･ step: The amount of time between each datapoint

▸ Query repeated for each timestamp

･ Starting with start, increasing by step up to and including end

▸ Can only return data points and labels for multiple timestamps for

one or more time series (Range Vector)

HTTP Query Range Endpoint

curl -XGET 'http://prometheus-server:9090/api/v1/query_range' \

 -d 'query=http_requests_total{method="GET", path="/hello/world"}' \

 -d 'start=1623456000' \

 -d 'end=1623456100' \

 -d 'step=10s'

23

{

 "status": "success",

 "data": {

 "resultType": "matrix",

 "result": [

 {

 "metric": {

 "__name__": "http_requests_total ",

 "method": "GET",

 "path": "/hello/world ",

 "instance": "example.com:9090 "

 },

 "values": [

 [1623456000, "100"],

 [1623456010, "110"],

 [1623456020, "120"],

 [1623456030, "130"],

 [1623456040, "140"],

 [1623456050, "145"],

 [1623456060, "148"],

 [1623456070, "152"],

 [1623456080, "155"],

 [1623456090, "158"],

 [1623456100, "160"]

]

 }

]

 }

}

Note

resultType: “matrix” in the

HTTP response indicates a Range

Vector

24

▸ Similar to a materialized view, you can have Prometheus synthesize

the results of query as a time series.

groups:

 - name: example

 rules:

 - record: code:prometheus_http_requests_total:sum

 expr: sum by (code) (prometheus_http_requests_total)

Recording Rules

25

▸ Start at the innermost expressions and work outwards

▸ Use comments to keep notes; PromQL supports comments and

multi-line queries

calculate max velocity over the previous 10 minutes

max_over_time(

 # calculate its derivative (velocity)

 deriv(

 # calculate its rate over the previous 30 seconds, w/ 5 sec samples

 rate(

 # look at the previous 5 seconds of distance covered

 distance_covered_total[5s]

)[30s:5s]

)[10m:]

)

Advice for Analyzing PromQL

26

● Prometheus documentary:

https://www.youtube.com/watch?v=rT4fJNbfe14

● Documentation:

https://prometheus.io/docs/prometheus/latest/querying/basics/

● Book: Prometheus: Up & Running (O'Reilly)

Resources

https://www.youtube.com/watch?v=rT4fJNbfe14
https://prometheus.io/docs/prometheus/latest/querying/basics/

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

27

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

O
ptional section m

arker or title

